Approximation of analytic functions by sequences of linear operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of analytic functions by sequences of linear operators in the closed domain

We consider the space of analytic functions in the closed domain, where convergence is a uniform convergence in closed domain that contains the original domain strictly inside itself and prove the theorems on the approximation and statistical approximation of functions in this space by the sequences of linear operators.

متن کامل

Approximation of Analytic Functions by Sequences of Linear Operators in a Polydisc

We consider the space of analytic functions in polydisc with the topology of compact convergence, and prove some theorems on the approximation and statistical approximation of functions in this space by the sequences of linear operators.

متن کامل

Subspace-diskcyclic sequences of linear operators

A sequence ${T_n}_{n=1}^{infty}$ of bounded linear  operators on a separable infinite dimensional Hilbert space $mathcal{H}$ is called subspace-diskcyclic with respect to the closed subspace $Msubseteq mathcal{H},$ if there exists a vector $xin mathcal{H}$ such that the disk-scaled orbit ${alpha T_n x: nin mathbb{N}, alpha inmathbb{C}, | alpha | leq 1}cap M$ is dense in $M$. The goal of t...

متن کامل

Approximation of analytic functions of several variables by linear k-positive operators

We investigate the approximation of analytic functions of several variables in polydiscs by the sequences of linear k-positive operators in the Gadjiev sense.

متن کامل

Approximation of Analytic Functions by Chebyshev Functions

and Applied Analysis 3 where we refer to 1.4 for the am’s and we follow the convention ∏m−1 j m · · · 1. We can easily check that cm’s satisfy the following relation: m 2 m 1 cm 2 − ( m2 − n2 ) cm am 2.2 for any m ∈ {0, 1, 2, . . .}. Theorem 2.1. Assume that n is a positive integer and the radius of convergence of the power series ∑∞ m 0 amx m is ρ > 0. Let ρ0 min{1, ρ}. Then, every solution y ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2014

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1401099g